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Review: Lecture 2

m Complex Vector Space
® Transpose, conjugate and adjoint

m Basis and Dimension
® Change of basis

m |nner Product and Hilbert Space
® |nner product, norm and distance

m Eigenvalues and Eigenvectors

m Hermitian and Unitary Matrices
® Properties and physical meaning
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Lecture 3: The Leap from
Classic to Quantum

Classic Deterministic Systems

e Deterministic state

e Deterministic dynamics: Boolean
adjacency matrix

* keynotes

Quantum Systems

e Interference

e Quantum state

e Quantum dynamics: unitary matrix
e Example 1: the quantum billiard ball
e Example 2: double-slit experiment

e Particle-wave duality

e Superposition and measurement

e keynotes

Probabilistic Systems

¢ Probabilistic state

e Stochastic dynamics: (doubly) stochastic
matrix

e Example 1: the stochastic billiard ball

e Example 2: probabilistic double-slit
experiment

* keynotes
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1. Classic Deterministic Systems

m State

e Deterministic state

Example 3.1.1 Let there be 6 vertices in a graph and a total of 27 marbles. We

might place 6 marbles on vertex (, 2 marbles on vertex 1, and the rest as described
by this picture.

Oe||6 lef|2 2|1
(3.1)
3e/|5 4e|3 5|10
We shall denote this state as X = [6,2, 1,5, 3, 10]”. O
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1. Classic Deterministic Systems

m Dynamics
e Simple (unweighted) directed graph

Example 3.1.3 An example of the dynamics might be described by the following

directed graph:
Del||6 le||2 2e||l
(33)
I~
3e||5 4e|l3 5|10
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1. Classic Deterministic Systems

m Dynamics

e Boolean adjacency matrix

0e|[6]

(1))

3e
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M(i,7) =1 if and only if there is an

arrow from vertex j to vertex i
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1. Classic Deterministic Systems

m Dynamics

e State evolvement: matrix * vector
Let’s say that we multiply M by a state of the system X = [6,2, 1, 5, 3, 10]”. Then

we have
0O 0 0 0 0 O 6 0
0O 0 0 0 0 O 2 0
01 0 0 0 1 1 12
MX = = =Y. (3.5)
0O 0 01 00 5 5
0O 01 0 00 3 1
1 00 0 1 0 10 9

To what does this correspond? If X describes the state of the system at time ¢,
then Y is the state of the system at time ¢ 4+ 1 , 1.e., after one time click. We can see
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1. Classic Deterministic Systems

m Dynamics
e Multiple step dynamics

» Boolean matrix multiplication

o0

M) = \/ MGR AMG) < % \
\

M- (i,5) =1 if and only if there is a path
of length 2 from vertex j to vertex i

on—1
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Supplementary material

m Why Boolean matrix multiplication?

e A explanation

—__N

{1 1}2_{1><1+1><0 1><1+1><1} {1 2}
0 1] |0OX14+1x0 Ox1+1x1 01

—+

F'T (FANT)V(IT'NF) (FANT)V(TN\T)

- - .= .-

*_—_—_—_-

(
1
1
l
l
l
{T TT_{(TAT)V(TAF) (TAT)V(TAT)]
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Supplementary material

m Why Boolean matrix multiplication?

e A explanation but not true for classic

deterministic system

o1)

> V; ™V,
> Vi ™V,

(nondeterministic!)

(R B 5 F e 20222%

1. Classic Deterministic Systems

m Dynamics
e Boolean adjacency matrix
012 3 435
0[O0 0 0O 0 O O
0e[1s] @] @ 1{0 00000
I:> M 210 1 0400 1
“3(0 00100
O [; :5'@ 4(0 0 1 0 0 O
5 1.1 0 10-40; 1.0
M(i,7) =1 if and only if there is an
arrow from vertex j to ve i

[E]15 & IE X T iR 3B M A TN BV R R 3R 1)
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Supplementary material

m Why Boolean matrix multiplication?

e Another explanation

> Perspective 1: Implementation of matrix multiplication

1 for(i = 0; i < n; i++4)
z | {
for(j = 0; j < n; j++)
1 {
5 boolean value = false;
for(m = 0; m € n; m++)
{
value ||= a[i][m] && b[m][j];
if (value)

break; // early out

1 }
12 c[i] [J] = wvalue;
3 }
14 1

(RSBASRFZE T EH T A 202248 - RE] F 44 I X T M EEM TSN R S IR ARFE)
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Supplementary material

m Why Boolean matrix multiplication?

e Another explanation

» Perspective 2: Computer Organization and Design

Operation Description Clock Cycles
ADD Integer Addition 2
AND/OR Logical Operations 1
MUL Integer Multiplication 5

Table 1: Clock Cycles for Basic Operations

(ReftsAR F E1T Bl £ W 20228 22K E F 45 X T BRSO A SN B9 & TR ARFY)
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Supplementary material

m Why Boolean matrix multiplication?

e Another explanation

» Comparative experiment

Comparison of Matrix Multiplication Algorithms

e 1000 times matrix multiplication of
[R100X100 % [R100X 100

e Algorithm 1: matrix multiplication
is 0.64s

e Algorithm 2: Boolean matrix
multiplication is 0.0224s

* Ratio 28:1

Figure 1: Time Distribution of Two Algorithms

(1 3ARR S B BN E L2022 BB AR E 44 56 F A kAR R T L B S TR AR
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1. Classic Deterministic Systems

m Keynotes

e The states of a system correspond to column

vectors (state vectors)
e The dynamics of a system correspond to matrices

e To progress from one state to another in one time

step, one must multiply the state vector by a matrix

e Multiple step dynamics are obtained via (Boolean)

matrix multiplication
(RRGHITE F B 20202 = FLE1F 45 H AR 51 A SAR R IR)
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2. Probabilistic Systems

m State
e Probabilistic entries

e Sum of all entries be 1
m Example: a three-vertex graph

{1 3 1]T
T= T, 7y &

e one-fifth chance that the marble is on vertex 0
e three-tenths chance that the marble is on vertex 1

e half chance that the marble is on vertex 2
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2. Probabilistic Systems

m Dynamics
e Directed (probabilistic) weighted graph

> several arrows shooting out of each vertex with real
numbers between 0 and 1 as weights
1

O.—(—-._________________—________________..-——'

% 2
AP
1
6
2 1
3 6
S 1
6 3
2
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2. Probabilistic Systems

m Dynamics

e Doubly stochastic matrix

> The column sum, i.e., the sum
of all weights leaving a vertex,
is 1

> The row sum, i.e., the sum of
all weights entering a vertex,
is 1

e Example
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Example 3.2.1 An example of such a graph is

1
2

Oe

1
3
-~ .p
1
6
2 1
3 6
3 1
6 3
o2

The adjacency matrix for this graph is

W2 W= o
W= M= =
= = N




2. Probabilistic Systems

m Dynamics

e Forward dynamics 1

Oe

% 2
—
1
6
3 6
b} 1
6 3
o2

e Backward dynamics 1 %
- - : ;-

-]

| b2 Lad| =
L= BAl= =
= D= D

O.'&\—_’—/
1 2 1
0 3 3 3
MI=|1 1 1 5 L
6 2 3 ) 6 3 :
3 6
5 1 0
6 6

o2
(Bt NTEREE W 2020 RfTEMZEIFUIEI A ARBackward dynamiciEFE JoiESEH undot#ERY I AESEIR)
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2. Probabilistic Systems

m Dynamics

e Multiple step dynamics

» Matrix multiplication with probability entries (a.k.a.,
normal matrix multiplication)
o0

M2<z',j>::2;M<z',k>M<k,j> > % x

M /

M?(i,5) = the probability of going from
vertex | to vertex i in 2 time clicks
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2. Probabilistic Systems

m Example
° Stochastlc billiard ball

/\ o110 -
1 1 1
2 5 00 3 o_ |0
! L oo ! 5 2= 0
0
0 3 3 0 o
I 71/27]
1/2 0
D — (2 — 3 — D 4) — (2
0 = 1/2 lj\>w_() N D) a'=e o)
0 | 11/2]
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2. Probabilistic Systems

0D

m Example %
e Probabilistic double-slit experiment /
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2. Probabilistic Systems

m Example

e Probabilistic double-slit experiment

e} 00000000
/ 10000000
10000000

/\ |:>B:0%010000 |:>B*B=BZ=
0001000
\/ oL 1 o010 0
< 00100010
I} (00 3 00001

. 1 1fT)r 177
X=11,0,0,0,0,0,0,0] |f‘> B’X = 0,0,0, 2, =317, =
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2. Probabilistic Systems

m Keynotes

e The vectors that represent states of a probabilistic physical

system express a type of indeterminacy (AHEE) about the
exact physical state of the system

e The matrices that represent the dynamics express a type of
indeterminacy about the way the physical system will change
over time. Their entries enable us to compute the likelihood of
transitioning from one state to the next

e The way in which the indeterminacy progresses is simulated by
matrix multiplication, just as in the deterministic scenario (note:
normal matrix multiplication VS Boolean matrix multiplication)
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3. Quantum Systems

m Real number weight: p< [0, 1]
(p1‘|‘p2) = p, and <p1‘|‘ p2) = P2

m Complex number weight: ¢ceC and [c|*< [0, 1]
|Cl‘|‘C2|2§ |C1|2 and |Cl‘|‘02|2§ |CQ|2

Example 3.3.1 For example,’ if c; =5+ 3i and ¢; = —3 — 2i, then |c¢;|*> = 34 and
lca]> = 13 but |¢; + 2> = |2+ i]?> = 5. 5 is less than 34, and 5 is less than 13. O

m Interference

e complex numbers may cancel each other when added
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3. Quantum Systems

m State

e quantum entries (complex values)

e Modulus square represent the probability

» sum of moduli squared of all entries is 1

m Example
° L/lg 125 \[}
1 4 2

rir=—-+ — —

3 15 5

N
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3. Quantum Systems

m Dynamics
e Graph
> directed (complex) weighted graph

e Matrix

» Unitary matrix U'U=UU"=1I
> Its modulus squares is a doubly stochastic matrix

1 I
‘/—E ;; ﬁ _1 1 ] i
@ > s 50
_ —i i - 12
. > U=|= £ of 0> UL JjIP =
s 0 0 i
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3. Quantum Systems

m Comparisons of three systems

Classical Deterministic I
Probabilistic System Quantum System
system
x = [21,T2,25] " L — [p1>p27p3]T x = [c1,co,c5] "
State 9
< several arrows shooting several arrows shooting
o exactly one arrow . .
» © . out of each vertex with out of each vertex with
L | & leaving each vertex I : :
g probabilistic weights complex weights
S| = : Unitary matrix whose
A S Boolean adjacency . : :
o ) Doubly stochastic matrix modulus squares is a
S matrix . .
doubly stochastic matrix
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3. Quantum Systems

m Dynamics

e State evolvement

2024/3/26
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the sum of result’s
modulus squaresis 1

|

28



3. Quantum Systems

m Dynamics

1 i
V2 =L V2 1 1
7 — —= 0
Forward 0. 1 i U — ”f \fi 0
dynamics 2 V22
2 0 0 i
Vi 1 7 i
V2
backward 0 i ! V=l oo
dynamics 2 V22
0 0 0 —i

e Time reversible: z—Uz—UlUz=Iz==

This means that if you perform some operation and then “undo” the operation, you

will find yourself (with probability 1) in the same state with which you began.

2024/3/26
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3. Quantum Systems

m Example
e Quantum billiard ball

le

1 _1 - -
/X | o
1 1 —
iV ) A= ) ==

Oe o3

1 1
V22
V2 - V2

0

SEEEN
- Sl

o o & o
SN

S-S o G

N

Ij‘> z® = % |j‘> 2@ — 2O |j‘> 23 — p® |j‘> ......

0
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3. Quantum Systems

m Example

e Double-slit experiment

J
|
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3. Quantum Systems

m Example

e Double-slit experiment ‘%(?)*

—1+1i
NG

G

le 6 OQ
%
1fi 1
Oe o 0‘5/> ® P =
-1+
2
2e G op
\ 1
Vo D)
o7

H-

&

1-i

> Interference: wave-like nature of light
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3. Quantum Systems

m Wave-particle duality
e Double-slit experiment )] é

» Wave-like nature of light

e Photoelectric effect experiment .., .. .

> Particle-like nature of light

e Magic

» Double-slit experiment can be done with a single
photon !
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3. Quantum Systems

m Superposition

e Double-slit experiment can be done with a
single photon !

The naive probabilistic interpretation of the position of the photon following the
bullet metaphor of the previous section is thus not entirely adequate. Let the state
of the system be given by X = [co, 1, ..., cn_l]T e C". It 1s incorrect to say that the
probability of the photon’s being in position k is |c|%. Rather, to be in state X means
that the particle is in some sense in all positions simultaneously. The photon passes
through the top slit and the bottom slit simultaneously, and Wwhen it exits both slits,
it can cancel itself out. A photon is not in a single positioMr it is In many
positions, a superposition.

[ Schroédinger's Cat J
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3. Quantum Systems

m Measurement

e Common sense vs. superposition

» How to explain?

This might generate some justifiable disbelief. After all, we do not see things in
many different positions. Our everyvday experience tells us that things are in one
position or (exclusive or!) another. How can this be? The reason we see particles
in one particular position is because we have performed a measurement. When we
measure something at the quantum level, the quantum object that we have mea-
sured 1s no longer in a superposition of states, rather it collapses to a single classical
state. So we have to redefine what the state of a quantum system is: a system is in

state X means that after measuring it, it will be found 1n position i with probability
cil*.
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3. Quantum Systems

m Power of quantum computing
e superposition

It 1s exactly this superposition of states that is the real power behind quantum
computing. Classical computers are in one state at every moment. Imagine putting a
computer in many different classical states simultaneously and then processing with
all the states at once. This is the ultimate in parallel processing! Such a computer
can only be conceived of in the quantum world.
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3. Quantum Systems

m Keynotes

2024/3/26

States in a quantum system are represented by column vectors
of complex numbers whose sum of moduli squared is 1

The dynamics of a quantum system is represented by unitary
matrices and is therefore reversible. The “undoing” s
obtained via the algebraic inverse, i.e., the adjoint of the
unitary matrix representing forward evolution

The probabilities of quantum mechanics are always given as
the modulus square of complex numbers

Quantum states can be superposed, i.e., a physical system can
be in more than one basic state simultaneously

{Quantum Computing) 37



Conclusion

1. Classical Deterministic Systems
» States, dynamics (transition graphs, adjacency matrices)
» Evolvement

2. Probabilistic Systems
» Probabilistic states and doubly stochastic matrices

3. Quantum Systems
» Quantum states and unitary matrices
Comparison of three systems
Time reversible
Wave-particle duality
Superposition and measurement

vV V V VY
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